Module Name	Hydrometeorology
Module level, if applicable	
Code, if applicable	GEL 2203
Semester(s) in which the module	Third (3 rd) Semester
Person responsible for the module	Prof. Dr. H.A. Sudibyakto, M.S
	Dr. Emilya Nurjani, S.Si., M.Si
Lecturer	Prof. Dr. H.A. Sudibyakto, M.S
	Dr. Emilya Nurjani, S.Si., M.Si
	Utia Suarma, S.Si., M.Si
Language	Bahasa Indonesia
Relation to curriculum	For Geography and Enviromental Science students only,
	specialize hidrology and meteorology, and one of elective
	class to be taken. This class available for third semester or
	higher.
Type of teaching, contact hours	STAR (Student Teacher Aesthetic Role-Sharing) is an optimal
	combination between SCL (Student Centered Learning) and
	TCL (Teacher Centered Learning).
	Lecture: 1400 minutes
	Mid Semester Examination: 100 minutes
	Final Semester Examination: 120 minutes
Workload	Lecturer, including homework and discussion = 14 meetings
	x 100 minutes each
	Mid Semester Examination: 100 minutes
	Final Semester Examination: 120 minutes Total workload =
	1620 minutes
Credit points	2
Requirements according to the	Must attend lecture for more than 70%
examination regulations	
Recommended prerequisites	-
Module objectives/intended	1. After following the lecture topic Introduction to
learning aoutcomes	Hydrometeorology, students are able to:
	a. Explain the study object of hydrometeorology
	b. Explain the relation between hydrology and meteorology-climatology
	c. Explain energy-balance
	d. Explain the problems related to weather and climate
	2. After following the lecture topic Hydrometeorology :
	Data Source, Measurement, and Analysis, students are
	able to:
	a. Explain some hydrometeorological tools and their
	functions
	b. Explain how to analyze temperature and humidityc. Explain how to analyze time of radiation
	d. Explain how to analyze rainfall intensity
	e. Explain how to analyze rainfall amount
	3. After following the lecture topic Evapotranspiration ,
	students are able to:

	· · · ·
	a. Explain the concept of evapotranspiration and
	transpiration b. Explain the concept of evapotranspiration
	b. Explain the concept of evapotranspiration measurement in a region
	c. Explain the factors related to evapotranspiration
	d. Explain some methods to measure
	evapotransporation
4	After following the lecture topic Rainfall-Station
	Network Design and Analysis of Intercorrelation among
	Rainfall- Stations, students are able to:
	a. Explain the number of rainfall stations needed in a
	specific region
	b. Explain some factors related to the determination of
	the location for rainfall station
	c. Explain some methods to design rainfall station
	network
5	After following the lecture topic Rainfall Analysis,
	students are able to:
	a. Explain the concept of regional precipitation and
	factors related to the distribution of that
	phenomena b Explain how to analyze the rainfall data consistency.
	 Explain how to analyze the rainfall data concistency test
	c. Explain the concept of rainfall-trend
	d. Explain how to analyze rainfall intensity, duration,
	and frequency
6	. After following the lecture topic Water Balance,
	students are able to:
	a. Explain the concept of water balance
	b. Explain the methods to calculate water balance
	c. Explain how to analyze water balance
7	. After following the lecture topic Principals of Water
	Balance Modelling based on Watershed, students are
	able to:
	a. Explain the concept of water balance in a watershed
	b. Explain the methods to calculate water balance in a
	watershed
	c. Explain how to analyze hydrograph
٥ ٥	After following the lecture topic Hydrometeorological
	Disasters: Designed Rainfall, students are able to:
	a. Explain some types of hydrometeorologycal disaster
	b. Explain the definition, components, and methods to
	calculate designed rainfall
9	After following the lecture topic Hydrometeorological
	Disasters: Drought , students are able to:
	a. Explain the definition of drought
	b. Explain the factors related to drought in a specific
	region
	 Explain the methods to predict drought in a specific region
	- CBION

	10. After following the lecture topic Rainfall-Runoff
	Modelling in Urban Area, students are able to:
	a. Explain the relation between rainfall and runoff
	b. Explain the related factors on rainfall-runoff in urban
	area
	c. Explain the rainfall-runoff model: SCS-CN
	11. After following the lecture topic Agrometeorology and
	Agroclimatology, students are able to:
	a. Explain the relation between weather and
	agriculture
	b. Explain the relation between climate and
	agriculture
	c. Explain the relation between climate and
	vegetation
	d. Explain the concept of climate classification: world
	methods and Indonesian methods
Content	1. Concept of Hydrometeorology (problems related to
	weather and climate)
	2. Hydrometeorology (data sources and components)
	3. Hydrometeorology (measurement and analysis)
	4. Evapotranspiration (concept and tools)
	5. Evapotranspiration (factors related and methods of
	calculation)
	6. Rainfall-station network design and Analysis of Inter-
	correlation among rainfall-stations
	7. Rainfall Analysis
	8. Water Balance (types and basic principals)
	9. Principals of Water Balance Modelling based on
	watershed
	10. Hydrometeorological Disasters (designed rainfall and
	flood)
	11. Hydrometeorological Disasters (drought)
	12. Application of Rainfall-Runoff Modelling in Urban Area
	13. Agrometeorology and Agroclimatology
Study and examination	Quiz (5%), participation (5%), assignment (20%), discussion
requirements and forms of	(10 %), mid-semester examination (30 %) dan final
examination	examination (30 %). Examination is formed in written test.
Media employed	- ELISA website
	- Internet
	- Computers
	- Interactive video
	- LCD projector
Reading list	Adidarma, W., 2010, Diktat Pelatihan Kekeringan, Balai Hita,
	Puslitbang SDA, Bandung.
	Hadisusanto, N., 2011. Aplikasi Hidrologi. Yogyakarta: Jogja
	Media Utama
	Qodriyatun, S.N., 2013. Bencana Hidrometeorologi dan
	Upaya Adaptasi Perubahan Iklim. Info Singkat
	Kesejahteraan Sosial Vol V, No.10/II/P3DI/Mei/2013.
	,

Sene, K., 2010. Hydrometeorology : Forecasting and
Applications, Springer Dordrecht Heidelberg.
Seyhan, E. 1995. Dasar-Dasar Hidrologi. Yogyakarta: UGM
Press.
Shelton, ML., 2009. Hydroclimatologu : Perspectives and
Applications, New York : Cambridge
Soemarto, S. 2006. Hidrologi Teknik. Malang: PPMTT.
Soewarno, S. 1991. Hidrologi: Pengukuran dan Pengolahan
Data Aliran Sungai (Hidrometri). Bandung: Penerbit
NOVA.
Thornthwaite, C.W., and J.P. Matter. 1957. Instruction and
tables for computing potensial evapotranspiration and
te water balance. Drexel Institute of Climatology. New
Jersey. 401p.
Tjasyono, B. 2004. Klimatologi. Bandung: Institut Teknologi
Bandung.
Vijay P Singh., and Donald K. Frevert, 2006. Watershed
Models, Boca Raton : Taylor & Francis
Wagener, T,m Wheater HS., Gupta, H., 2004. Rainfall-Runoff
Modelling in Gauged and Ungauged Catchments,
London : Imperial College Press