Module Name	Geohydrology
Module level, if applicable	Advance
Code, if applicable	GEL 2206
Semester(s) in which the module	4 th
Person responsible for the module	Dr. Tjahyo Nugroho Adji, M.Sc.Tech.
Lecturer	1. Prof. Dr. Setyawan Purnama, M.Si.
	2. Dr. Tjahyo Nugroho Adji, M.Sc.Tech.
	3. Ahmad Cahyadi, S.Si., M.Sc.
Language	Bahasa Indonesia
Relation to curriculum	Geohydrology Course is one of the elective courses in
	Environmental Geography Study Program, Faculty of
	Geography. Geohydrology courses can be taken by students
	in the fourth semester. Geohydrology courses are advanced
	courses of basic hydrology courses. Geohydrology courses
	cover the study of groundwater hydrological conditions and
	methods of evaluation of groundwater potentials of a
	region.
	The topics selected in the eyes of this quality include the
	characteristics of aquifers, springs, groundwater quality and
	quantity analysis, groundwater management, groundwater
	potential investigations, and even some topics on
	sustainable groundwater management models. This will
	certainly contribute positively to society and country as they
	pass and working into the real world.
Type of teaching, contact hours	STAR (Student Teacher Aesthetic Role-Sharing) is an optimal
	combination between SCL (Student Centered Learning) and
	TCL (Teacher Centered Learning).
Workload	Lecturer, including homework and discussion: 14 meetings
	x 100 minutes each
	Mid Semester Examination: 100 minutes
	Final Semester Examination: 100 minutes
	Total workload = 1600 minutes
Credit points	2 Credits
Requirements according to the	Minimum attendance requirement 70% from total lecture
examination regulations	
Recommended prerequisites	Basic Hydrology
Module objectives/intended	After following this course students are expected to be able
learning outcomes	to evaluate the potential of groundwater in different places
	on the surface of the Earth including its influence factors.
	Students are able to choose a method and make a
	framework of problem investigation and groundwater
	potential, and able to arrange and make groundwater model
	in a region.

	Through this course design, students are expected to think
	critically to save groundwater, to evaluate groundwater
	conditions in a region, including to analyze and dare to
	express ideas and ideas with confidence. The ability of this
	softskills will be useful when students shine, discuss with
	mentors while undergoing the final task and when working into the world of work.
Courtour	
Content	Introduction and general explanation about concept of
	groundwater and Geohydrology
	2. Groundwater Vertical Zonation
	3. Water table fluctuation and aquifer
	4. Characteristics of aquifer
	5. Methods to aquifer characteristics analysis
	6. Spring and Seepage
	7. Analysis and estimation of safe yield
	8. Grounwater Potency
	9. Pumping test methods
	10. Aplication of GIS, remote sensing and geophysic on
	groundwater resources investigation
	11. Groundwater used model
	12. Groundwater hydrogeochemistry
	13. Sea water intrusion
Study and examination	1. Individual assignment – written
requirements and forms of	2. Midterm exam – written
examination	3. Attendance – summary from presence list
	4. Final exam – written and/or oral
Media employed	1. Online sources
	2. Computers
	3. Interactive video
	4. LCD projector
Reading list	Brown, A.G. 1995. Geomorphology and Groundwater,
	Chichester: John Wiley and Sons.
	Fetter, C.W. 1988. Applied Hydrogeology. New York: Mac
	Millan Publishing.
	Freeze, R.A. and Cherry, J.A. 1979. <i>Groundwater</i> . New
	Jersey: Englewood Cliff, Prentice Hall Inc.
	Gilli, E.; Mangan, C. and Mudry, J. 2012. <i>Hydrogeology:</i>
	Objectives, Methods, Applications. Boca Raton: CRC
	Press.
	Hem, J.D. 1970. Study and Interpretation of the Chemical
	Characteristic of Natural Water. Washington D.C.:
	United State Government Printing Office.
	Hiscock, K.M. 2005. Hydrogeology: Principles and Practice.
	Oxford: Blackwell Publishing.

- Kruseman and de Ridder, 1990. *Analysis and Interpretation of Pumping Test Data*. ILRI, Wagenigen, the Netherlands
- Margat, J. and van der Gun, J. 2013. *Groundwater Around the World*. Boca Raton: CRC Press.
- Moore, J.E. 2002. Field Hydrogeology: A Guide for Site Investigations and Report Preaparation. Boca raton: CRC Press.
- Nonner, J.C. 2003, *Introduction to Hydrogeology*. Deflt: A,A, Balkema Publisher.
- Sen, Z. 2015. *Practical and Applied Hydrogeology.* Waltham, UK: Elsevier.
- Tanuguchi, M. and Holman, I.P. 2010. *Groundwater Response to Changing Climate*. Boca Raton: CRC Press.
- Todd, D.K. and Mays. 2005. *Groundwater Hydrology*. New York, John Wiley and Sons
- Walton, W.C. 1970. *Groundwater Resources Evaluation*. Tokyo, Mc Graw Hill Book Company
- Weight, W.D. 2008. *Hydrologeology Field Manual, Second Edition*. New York: The McGRaw-Hill Companie, Inc.
- Younger, P.L. 2007. *Groundwater in the Environment*. Oxford, United Kingdom: Blackwell Publishing.